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ABSTRACT
Occupancy modeling is used to evaluate avian distributions and habitat associations, yet it typically requires extensive 
survey effort because a minimum of 3 repeat samples are required for accurate parameter estimation. Autonomous re-
cording units (ARUs) can reduce the need for surveyors on-site, yet their utility was limited by hardware costs and the 
time required to manually annotate recordings. Software that identifies bird vocalizations may reduce the expert time 
needed if classification is sufficiently accurate. We assessed the performance of BirdNET—an automated classifier ca-
pable of identifying vocalizations from >900 North American and European bird species—by comparing automated to 
manual annotations of recordings of 13 breeding bird species collected in northwestern California. We compared the pa-
rameter estimates of occupancy models evaluating habitat associations supplied with manually annotated data (9-min 
recording segments) to output from models supplied with BirdNET detections. We used 3 sets of BirdNET output to eval-
uate the duration of automatic annotation needed to approach manually annotated model parameter estimates: 9-min, 
87-min, and 87-min of high-confidence detections. We incorporated 100 3-s manually validated BirdNET detections per 
species to estimate true and false positive rates within an occupancy model. BirdNET correctly identified 90% and 65% 
of the bird species a human detected when data were restricted to detections exceeding a low or high confidence 
score threshold, respectively. Occupancy estimates, including habitat associations, were similar regardless of method. 
Precision (proportion of true positives to all detections) was >0.70 for 9 of 13 species, and a low of 0.29. However, pro-
cessing of longer recordings was needed to rival manually annotated data. We conclude that BirdNET is suitable for an-
notating multispecies recordings for occupancy modeling when extended recording durations are used. Together, ARUs 
and BirdNET may benefit monitoring and, ultimately, conservation of bird populations by greatly increasing monitoring 
opportunities.

Keywords: acoustic monitoring, ARU, automated species classification, autonomous recording unit, bioacoustics, 
BirdNET, convolutional neural network, passive acoustic monitoring
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LAY SUMMARY

	•	 Occupancy modeling provides valuable information for understanding bird distributions, but often requires extensive 
survey effort. Autonomous recording units (ARUs) produce vast amounts of data, yet manually identifying birds on 
recordings is time-consuming.

	•	 We evaluated the performance of an automated bird sound classifier, BirdNET, by comparing occupancy models that 
used manually and BirdNET-annotated data for 13 species in northwestern California, USA.

	•	 We manually identified bird species heard during 9-min recordings at 34 sites, and used BirdNET to identify birds 
during 9–260-min recordings from each site. We also manually verified 100 BirdNET detections for each species.

	•	 BirdNET correctly identified most bird species detected during manual bird identification when data were restricted 
respectively to nearly all (90% correct) or only high confidence (65% correct) detections. Habitat associations were 
similar across all models.

	•	 We conclude that BirdNET is a useful tool for automatic annotation of bird vocalization data needed to model bird 
presence or absence.
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Las clasificaciones automatizadas de sonidos de aves de grabaciones de larga duración producen 
resultados de modelos de ocupación similares a los datos anotados manualmente

RESUMEN
El modelado de la ocupación se utiliza para evaluar las distribuciones de aves y las asociaciones de hábitats, pero 
normalmente requiere un esfuerzo de estudio extenso porque se necesita un mínimo de tres muestras repetidas para 
una estimación precisa de los parámetros. Las unidades de grabación autónomas (UGA) pueden reducir la necesidad 
de censistas en el sitio, pero su utilidad estaba limitada por los costos de hardware y el tiempo requerido para anotar 
manualmente las grabaciones. Un software que identifique las vocalizaciones de las aves puede reducir el tiempo 
necesario de los expertos, si la clasificación es lo suficientemente precisa. Evaluamos el desempeño de BirdNET—un 
clasificador automatizado capaz de identificar vocalizaciones de más de 900 especies de aves de América del Norte 
y Europa—comparando anotaciones automáticas con anotaciones manuales de grabaciones de 13 especies de aves 
reproductoras registradas en el noroeste de California. Comparamos las estimaciones de los parámetros de los modelos 
de ocupación que evalúan las asociaciones de hábitat obtenidas a partir de datos anotados manualmente (segmentos de 
grabación de nueve minutos) con los resultados de los modelos obtenidos a partir de detecciones de BirdNET. Utilizamos 
tres sets de resultados de BirdNET para evaluar la duración de la anotación automática necesaria para aproximarse a 
las estimaciones de los parámetros del modelo de anotación manual: 9 min, 87 min y 87 min de detecciones de alta 
confianza. Incorporamos 100 detecciones de BirdNET de tres segundos por especie validadas manualmente para estimar 
las tasas de verdaderos y falsos positivos dentro de un modelo de ocupación. BirdNET identificó correctamente el 90% 
y el 65% de las especies de aves que un ser humano detectó cuando los datos se restringieron a las detecciones que 
superaban un umbral de puntuación de confianza bajo o alto, respectivamente. Las estimaciones de ocupación, incluidas 
las asociaciones de hábitat, fueron similares independientemente del método. La precisión (proporción de verdaderos 
positivos para todas las detecciones) fue >0.70 para nueve de las 13 especies, y un mínimo de 0.29. Sin embargo, se 
necesitó el procesamiento de grabaciones más largas para competir con los datos anotados manualmente. Concluimos 
que BirdNET es adecuado para anotar registros de múltiples especies para el modelado de la ocupación cuando se 
utilizan registros de duración extendida. Juntos, las UGA y BirdNET pueden beneficiar el monitoreo y, en última instancia, 
la conservación de las poblaciones de aves al aumentar considerablemente las oportunidades de monitoreo.

Palabras clave: bioacústica, BirdNET, clasificación automatizada de especies, MAP, monitoreo acústico, monitoreo 
acústico pasivo, red neuronal convolucional, unidad de grabación autónoma

INTRODUCTION

The use of autonomous sound recording units for avian re-
search, also known as passive acoustic monitoring (PAM), 
has increased rapidly in avian research over the past 
20 years (Sugai et al. 2019), with techniques for processing 
and analyzing large amounts of data generated by acoustic 
monitoring also improving (Gibb et al. 2019). Early studies 
using recordings from autonomous recording units (here-
after ARUs) relied on observers skilled in identifying bird 
songs and calls to “manually” annotate the recordings 
(Haselmayer and Quinn 2000, Celis-Murillo et  al. 2009). 
However, advances in automated processing technolo-
gies have substantially reduced the trained person-hours 
required to annotate recordings (Katz et  al. 2016a, Kahl 
2019).

Vast amounts of audio recording data may be generated 
during long-term audio deployments, typically requiring 
researchers to subsample data to shorten the duration of 
the manual annotation process (Thompson et  al. 2017). 
Automated classifiers process recordings quickly at a low 
cost and may increase the likelihood of detecting rare spe-
cies or cryptic individuals because of the relative ease of 
processing long-duration recordings. Classifiers also allow 
researchers to avoid difficult decisions about truncating or 
discarding recording data due to the cost and time needed 
for manual annotation. However, automated classifiers are 

not without drawbacks – such as high false-positive and 
false-negative error rates and, for some applications, a sub-
stantial time investment to develop and/or refine classi-
fiers for species of interest (Gibb et al. 2019) or to manually 
verify at least a subset of automated detections. The recent 
development of a classifier for >900 bird species across 
both North America and Europe (Kahl 2019) is therefore 
an exciting next step in automated bird sound processing.

A joint effort between the Cornell Lab of Ornithology and 
Chemnitz University of Technology resulted in BirdNET, a 
freely available comprehensive classifier that uses a con-
volutional neural network algorithm to rapidly identify a 
large suite of bird species in small segments of longer audio 
recordings (Kahl 2019). BirdNET can be run as a Python 
script executed from a console, used as an application on 
iPhone or Android, or accessed from an internet browser 
(https://birdnet.cornell.edu/). BirdNET divides a longer 
recording into smaller, non-customizable segment lengths 
of 3 s and analyzes each segment. After a preliminary re-
view of bird vocalization data, the BirdNET team chose a 
3-s segment interval because it would likely encompass a 
complete vocalization for most bird species (Kahl 2019). 
BirdNET then generates a large list of values (confidence 
scores) indicating how confident it is that vocalizations 
of each of the >900 species it can identify are present on 
the recording. This list of species is then sorted by confi-
dence scores and the three species with the highest scores 
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are returned as output. Preliminary testing of BirdNET 
yielded a mean average precision (proportion of true posi-
tives to all detections) of 0.79 for single-species recordings 
across 984 North American and European bird species, 
indicating that it may be relatively useful for audio anno-
tation of entire bird communities (Kahl et al. 2021). Few 
independent studies have evaluated BirdNET for its per-
formance relative to manually annotated recordings (Kahl 
et  al. 2021, Wood et  al. 2021). Only a handful of studies 
have evaluated the performance of BirdNET in the western 
United States (Toenies and Rich 2021, Wood et al. 2021) 
or with bird sounds from across North America (Arif et al. 
2020). Wood et al. (2021) provided a useful demonstration 
of the duration and spatial breadth of sampling required 
to adequately sample a western avian community with 
ARUs and BirdNET. However, none of these studies evalu-
ated how BirdNET output might perform in an occupancy 
modeling framework relative to data collected using more 
traditional methods (i.e., human annotation of audio).

Among the tasks necessary for the use of BirdNET in 
research and monitoring are optimizing classifier per-
formance and using this output to draw inferences about 
a given species. One way to improve performance is en-
suring that the recordings being annotated are sufficiently 
long (or contain enough vocalizations) to yield an accept-
ably large number of high-quality detections of the target 
species. Having a large number of detections allows greater 
certainty of site occupancy status. BirdNET generates a 
confidence score from 0 to 1 that indicates how confident 
the classifier is in each detection. BirdNET users can filter 
annotation outputs by setting a confidence threshold (a 
cutoff value that defines detections with confidence scores 
greater than the threshold as valid) to fit their needs, ei-
ther low to minimize the risk of missing detections (at a 
cost of increasing the frequency of false positives) or high 
to reduce the risk of false positives (at a cost of increasing 
the frequency of false negatives). Identifying optimal sam-
pling duration and confidence threshold values for filtering 
automatically annotated output is critical for replicating 
human-like annotation performance.

Occupancy modeling has long been used to evaluate 
bird status, population trends, distributions, and habitat 
associations (MacKenzie et  al. 2006, Kéry et  al. 2010, 
Saunders et  al. 2019), but typically requires repeat visits 
to multiple sites by trained surveyors (MacKenzie et  al. 
2002). ARUs could provide the extensive data needed to fit 
robust models, but correct identification of birds from re-
cordings is essential. Modeling false positive detections in 
an occupancy modeling framework has been well explored 
(Miller et  al. 2011, 2013, Chambert et  al. 2015, Banner 
et al. 2018), and many existing frameworks focus on pro-
cessing acoustic data. Kéry and Royle (2020) extend the 
model developed by Chambert et al. (2018) to allow esti-
mation of whether a species’ detection is a false positive or 

true positive based on confidence scores of detections and 
supplementary information provided via validations. This 
approach frees the analyst from having to specify a confi-
dence score threshold to filter BirdNET output, with the 
classification of observation as a true positive or false posi-
tive estimated from the data. If the modeling framework 
described by Kéry and Royle (2020) proves effective for 
modeling BirdNET output, it could provide a pipeline to 
gain insights into avian ecology, distribution, and popula-
tion change through a simple combination of a more robust 
occupancy model and a state-of-the-art sound classifier.

We evaluated the BirdNET classifier’s annotation per-
formance on ARU sound recordings collected within 
a state park in northwestern California during the bird 
breeding season. Our goal was to assess whether BirdNET 
detections modeled in an occupancy framework can pro-
vide equivalent model output to human annotation data. 
More specifically our objectives were to 1)  compare oc-
cupancy parameter estimates between occupancy models 
using BirdNET versus manually annotated data, 2)  iden-
tify the confidence threshold that minimizes false posi-
tive detections for focal bird species, and 3) determine the 
minimum duration of recording required to identify focal 
species also detected during a 9-min manual annotation. 
The occupancy models that we compare include the fol-
lowing: 9-min of manual annotation, 9-min of BirdNET 
annotation, 87-min of BirdNET annotation, and 87-min 
of BirdNET annotation reduced to output with confidence 
scores greater than a predefined score.

METHODS

Study Area
We deployed ARUs to record bird vocalizations within 
Carnegie State Vehicular Recreation Area (37.6263°N, 
121.5536°W), hereafter Carnegie, in northwestern 
California. Carnegie is a California State Park comprising 
>2,000 ha, and is managed for off-highway vehicle (OHV) 
recreation on designated trails, as well as unrestricted 
OHV use in small portions of the park. The park is com-
prised of a mix of upland and riparian plant communities, 
particularly oak woodland, California annual grassland, 
and shrublands dominated by coastal sagebrush (Artemisia 
californica) and black sage (Salvia mellifera).

Sampling Design
We deployed Song Meter SM4 (Wildlife Acoustics, 
Massachusetts, USA) ARUs across Carnegie between May 14 
and 24, 2018, and sampled each site on a single day from 15 min 
before local sunrise to 11:00 hr on days without any precipitation. 
We selected these dates and times because they represent the 
time of year (breeding season) and the day when birds vocalize 
most frequently. Access constraints imposed by rough road con-
ditions and proximity to a heavily trafficked road with excessive 
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noise interference, along with a random stratified sampling of 
otherwise useable sites, led us to select 44 sites from among 114 
established long-term bird monitoring sites. ARUs were housed 
within plywood enclosures and mounted on a steel t-post ~1.5 
m above ground level (Supplementary Material Figure 1). ARU 
sampling sites were >150 m from the next site (range = 157–587 
m apart) and 75% of sites were >220 m from the next closest site. 
The sound sampling rate was set to 44.1 kHz, left and right gain 
set to 16 dB, and preamplifier gain set to 26 dB. We report results 
from 34 of the 44 sites because recorded bird vocalizations were 
difficult to discern due to heavy wind noise at 10 sampling sites, 
so our recordings may reflect more ideal recording conditions 
than are typically encountered. We selected 13 focal bird spe-
cies (Table 1) that were most frequently detected during manual 
annotation and therefore each presumably provides a relatively 
broad variety of vocalizations on the recordings (i.e., more detec-
tions result in a higher likelihood of different vocalization types) 
and better facilitate the evaluation of BirdNET’s performance on 
more than a single stereotypical vocalization.

Manual Annotation of Recordings
A single expert observer annotated all bird species heard 
on a single 9-min recording segment collected by an ARU 
at each sampling site for a total of 396 min across all sites. 
A  9-min period was chosen because it could be divided 

evenly into three 3-min periods for occupancy modeling. 
We also annotated recordings at a much smaller temporal 
scale of 3-s to match the length used by BirdNET during 
annotation. From each ARU, the observer annotated a seg-
ment collected during the early morning at a randomly 
selected start time ranging from 5:55 to 8:30 hr, or 10 to 
166 min after local sunrise. The observer used headphones 
(Model: MDRV6; Sony, Tokyo, Japan) to listen to record-
ings using Audacity version 2.2.0 (The Audacity Team, 
https://www.audacityteam.org/download/), and visual-
ized the sound using the spectrogram view. Spectrogram 
parameters were set to those recommended for songbirds 
(Lankau et  al. 2015). The 9-min segments were initially 
subdivided into 1-min sections during which the observer 
identified any vocalizing birds to species (i.e., species pres-
ence) because we thought finer-grained annotation might 
prove useful, though after annotation we recombined the 
data into 3-min sections. The observer reviewed record-
ings multiple times and consulted reference sounds (xeno-
canto: http://xeno-canto.org, eBird: http://ebird.org/
media/catalog?mediaType=a) as needed to confirm species 
identification. The observer also scored wind noise on re-
cordings on a scale of 0 to 3 (Supplementary Material Table 
1) with 0 corresponding to no wind and 3 the heaviest 
wind. We excluded sites with wind scores of 3.

TABLE 1.  Precision (proportion of true positives relative to all positives) for 13 focal bird species derived from validation of 100 random 
samples of BirdNET detections of each species, recall (proportion of true positives to all true positives and false negatives) for 9-min 
recording segments manually annotated and annotated by BirdNET, the maximum confidence score for BirdNET detections that were 
confirmed to be false positives, and shorthand codes for each bird species (Species code). We also present the threshold above which 
BirdNET detections were included in the “BN Long Filtered” model.

Common name Scientific name 
Species  

code Precision Recalla 

Maximum confidence  
score for false  

positives 

Threshold to 
retain BirdNET 
observations 

Acorn Woodpecker Melanerpes 
formicivorus

ACWO 0.84 0.14 0.23 0.28

Ash-throated 
Flycatcher

Myiarchus 
cinerascens

ATFL 0.63 0.14 0.95 0.95

Bewick’s Wren Thryomanes 
bewickii

BEWR 0.91 0.60 0.49 0.54

California Quail Callipepla 
californica

CAQU 0.96 0.68 0.08 0.13

California Scrub-Jay Aphelocoma 
californica

CASJ 0.99 0.20 0.82 0.87

California Towhee Melozone crissalis CALT 0.99 0.53 0.10 0.15
Common Raven Corvus corax CORA 0.29 0.11 0.79 0.84
Mourning Dove Zenaida macroura MODO 0.67 0.09 0.56 0.61
Nuttall’s Woodpecker Picoides nuttallii NUWO 0.95 0.26 0.38 0.43
Oak Titmouse Baeolophus 

inornatus
OATI 0.91 0.50 0.57 0.62

Spotted Towhee Pipilo maculatus SPTO 0.74 0.43 0.10 0.15
White-breasted 

Nuthatch
Sitta carolinensis WBNU 0.69 0.29 0.98 0.95

Wrentit Chamaea fasciata WREN 0.90 0.40 0.34 0.39

a Note that precision and recall are not on the same scale: precision is comparing 3-s recording segments, and recall is comparing 
whether BirdNET had any detections during a 9-min period at the same sites where a human detected a species during annotation of 
the same period.
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BirdNET Annotation of Recordings
We used the BirdNET automatic bird sound classifier (Kahl 
2019), which is freely available on GitHub (https://github.
com/kahst/BirdNET), to annotate the same 9-min re-
cording segments annotated by a human observer. We also 
used BirdNET to annotate the entire >5 hr recording col-
lected at each sampling point during the day that included 
the 9-min segment. We ran BirdNET using Python 3.6.7 
(Van Rossum and Drake 2009), set it to classify sounds only 
for the 209 species detected on eBird checklists within a 
0.5° latitude by 0.5° longitude grid cell that encompassed 
Carnegie (Supplementary Material Table 2), and kept all 
remaining settings at their default values. BirdNET divides 
recordings into 3-s non-overlapping segments and outputs 
a text file that provides identities for a maximum of 3 spe-
cies that BirdNET had the highest confidence – measured 
in a score ranging from 0 (least confident) to 1 (most con-
fident) – were present on a given segment. We filtered the 
BirdNET output to only those detections that were ranked 
1 in the list of species and had confidence scores >0.01.

Human Validation of BirdNET
We randomly selected 100 BirdNET-generated detections 
for each of the 13 focal species and validated the 3-s re-
cording segments associated with the purported detections. 
The observer listened to each 3-s segment and inspected 
a spectrogram representation of the same recording and 
then noted whether the focal species was present or ab-
sent. The observer was made aware of the focal species that 
BirdNET identified vocalizing on each set of recordings, 
and confirmed only whether that species was present on 
the recording. We used this validation information, along 
with the confidence scores generated for BirdNET detec-
tions, for determining classifier performance.

Classifier performance summaries for focal species. 
 We compared the BirdNET-derived measure of occur-
rence for each species during a 9-min sampling period 
to our reference measure of species presence (i.e., detec-
tion during manual annotation). A focal species was thus 
considered to be present at a sampling location if it was 
detected at least once by the human observer during the 
9-min sampling period. For each of the focal species, we 
calculated a single classification performance metric, pre-
cision, which is defined as:

true positives
true positives+ false positives

A true positive occurred when both BirdNET and the 
human verifier detected a given species during a 3-s period, 
and a false positive occurred when the species was detected 
by BirdNET but not by the human verifier during the same 
3-s period. We assessed BirdNET’s precision without fil-
tering the detection data by confidence threshold (i.e., all 
detections with confidence scores >0.01 were included). 

We used the validation data (i.e., 100 detections for each 
species) to calculate precision and determine the max-
imum BirdNET confidence score for false-positive detec-
tions for each species. The maximum confidence score for 
false positives indicates how stringently to filter BirdNET 
output to maximize precision. For each species, we added 
0.05 to the maximum of all confidence scores for verified 
false-positive detections and used this as the threshold for 
filtering BirdNET output by confidence score (Table 1). For 
species with maximum confidence scores >0.95, we did not 
add 0.05 because that would result in data too sparse to 
model. We also calculated the recall metric at a different 
scale than precision (9-min rather than 3-s) defined as:

true positives
true positives+ false negatives

where true positives were sites that had at least one manual 
detection and at least one BirdNET detection of a given 
species during the manually annotated 9-min period 
False negatives were sites with a manual detection but no 
BirdNET detections during the same 9-min period. Again, 
as with the precision metric, we filtered BirdNET detec-
tions at a defined confidence score (Table 1).

Optimal sampling duration for detecting focal  
species.   We also used BirdNET to automatically anno-
tate recordings collected from 5:42 hr (15 min before the 
latest sunrise) to 10:27 hr from each site on the same day 
from which we obtained the 9-min manual detections. 
These long-duration recordings from each site were div-
ided into 26 non-overlapping, 10-min segments. We parti-
tioned our long-duration recordings into 10-min segments 
rather than 9-min because we wanted to use recording 
lengths typical of an acoustic deployment (e.g., collecting 
10-min recordings each hour). We excluded 20 min of re-
cordings when an in-person visit to each site took place 
(in case it was disruptive to the bird community). We fil-
tered BirdNET detections of individual bird species using 
a specified threshold for false positives as described above 
(Table 1). A site was considered to have a valid detection if 
a species was detected at least once during any time period 
up to and including the one under consideration. For ex-
ample, a site would be considered occupied after 30 min of 
sampling if there were any BirdNET detections during ei-
ther the first, second, or third 10-min recording segments 
at that site. We randomized the unique order of visits per 
site for BirdNET annotation data 100 times (where each 
10-min recording segment is considered a “visit”), using 
the “sample” function in R, to reduce the likelihood of bias 
due to time of visit (e.g., birds vocalize more frequently 
during earlier visits), yielding 100 unique sequences of 
BirdNET detections.

Traditional classifier metrics are not applicable to 
BirdNET detection summaries from our extended 
annotations because we have no knowledge of false 
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positives, false negatives, or even true positives on re-
cording segments that were not annotated by a human, 
with the exception of our validation data. Instead, we 
calculated the proportion of sites that BirdNET clas-
sified as occupied for each species at each time step 
that also had manual detections, which we refer to as 
the “reference site proportion”. The reference site pro-
portion provides a baseline to which BirdNET can be 
compared, assuming species were identified correctly 
by the human annotator. The reference site propor-
tion was defined such that if a human and BirdNET 
each detected a species at a given site then that 
was counted as a true positive. For each species, we 
summed all sites with true positives and divided this 
by the total number of sites with detections during 
the 9-min manual annotation period (Supplementary 
Material Figure 2). The reference site proportion can 
range from 0 representing no sites identified cor-
rectly, to 1 representing all sites identified correctly. 
The reference site proportion is very similar to the 
traditional recall metric (see Classifier performance 
section above) such that we define our metric as:

sites with ≥ 1 BirdNET detection
sites with manual detection in 9-min period

where the numerator could potentially be defined as 
“true positives” if we knew the status of the site outside 
the 9-min manual annotation period, and the denom-
inator could be considered the sum of true positives and 
false negatives (sites where BirdNET has not detected a 
species but a human has) but we have no insight into spe-
cies presence outside the 9-min period. The reference site 
proportion measure does not comprehensively assess false 
positives or negatives because we cannot be certain of the 
presence of a species at a given point in time without much 
more extensive verification (i.e., our manual annotations 
only give a brief snapshot of where bird species are pre-
sent). Nonetheless, our metric provides an index of how 
quickly BirdNET can identify occupied sites relative to a 
single, short (9-min) manual annotation period.

Modeling occupancy and habitat associations of 
manual and BirdNET annotations.  We modeled focal 
species occupancy using two data sources with distinct 

occupancy modeling frameworks. The first data source 
was derived from manual annotations of a 9-min period at 
each survey site, with detections of a given species aggre-
gated over three 3-min periods at each site which we refer 
to as the “manual” data. The remaining data were derived 
from BirdNET and we only retained the first 3 min of every 
10 min of recording per site to match the 3-min manual an-
notation periods. The subset of BirdNET annotations are 
as follows: annotations from the same three 3-min periods 
as the manual data (referred to as “BN Short”), annotations 
from the same three 3-min periods as the manual data 
and twenty-six additional 3-min periods at each site (re-
ferred to as “BN Long”), and annotations from the same 
three 3-min periods as the manual data and 26 additional 
3-min periods at each site but only including BirdNET de-
tections that exceeded a defined confidence score (Table 1) 
for each species (referred to as “BN Long Filtered”). Unlike 
BN Long Filtered, both BN Short and BN Long included 
all BirdNET detections with confidence scores >0.01. See 
Table 2 for a brief overview of each model included in our 
analyses.

The manual data were modeled using an occupancy 
model of the form detailed in Tingley and Beissinger 
(2013). Detection (1) or non-detection (0) of a species at 
site i and period j was represented as yij. We assumed that 
manual observations of occupancy were observations of an 
unobservable occurrence state zi such that:

yij ∼ Bernoulli(pij × zi)

where pij  is the probability of detection at each sampling 
site and period. We included two covariates on detection, 
time of day (hours after midnight) and naïve detection of a 
species (i.e., raw occurrence data) at a site in the previous 
sampling period, such that:

logit
(
pij
)
= α0 + α1 × yij−1 + α2 × timeij

and where yi0 = 0 because occurrence is unknown before 
the first visit. The α0, α1, and α2 coefficients represent the 
detection intercept, effect of the previous detection, and 
time of day on detection probability, respectively. We in-
cluded the α1 coefficient because of concerns that detec-
tions on recordings collected sequentially in time would be 

TABLE 2.  Description of occupancy models that used a mixture of manual and BirdNET annotation data. The specified values used to 
filter BirdNET detections are listed in Table 1.

Model name 

Number of 3-min 
annotations 

included per site 

BirdNET annotations 
with confidence score 

> 0.01? 

Detections with 
confidence score > 

specified value? 
Included BirdNET 

annotations? 

Confidence score data 
used for estimation of 

true positives? 

Manual 3 NA NA No No
BN Short 3 Yes No Yes Yes
BN Long 29 Yes No Yes Yes
BN Long Filtered 29 Yes Yes Yes No
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correlated to one another (i.e., 3-min segments collected 
one after another).

The BN Short, BN Long, and BN Long filtered data were 
modeled using an occupancy framework that utilizes de-
tection validation information and frequency of detections 
to inform occupancy estimates (Kéry and Royle 2020: Chp 
7). In the case of BirdNET data, we assumed counts of bird 
vocalizations yBNij detected at site i during period j were 
Poisson distributed such that:

yBNij ∼ Poisson(λ × zi +ω)

where λ is the true positive rate and ω is the false positive rate. 
Counts of bird vocalizations refer to the total number of 3-s re-
cording segments where BirdNET detected a species of interest 
within a 3-min period, so the count could range from 0 (no detec-
tions) to 60 (every 3-s segment contained a positive detection).

We assume that each BirdNET detection belonged to 
group g  =  1 representing a true positive, or group g  =  2 
representing a false positive and had an associated confi-
dence score xk for each detection of index k. Because the 
distribution of confidence scores from BirdNET was often 
strongly skewed (Supplementary Material Figure 3), we 
chose a Beta distribution to model confidence scores for 
each group rather than the Normal distribution used by 
Kéry and Royle (2020). Confidence scores xk were modeled 
such that confidence scores for true positives followed the 
distribution:

xk|g = 1 ∼ Beta(a1, b1)

and false positives followed the distribution:

xk|g = 2 ∼ Beta(a2, b2)� .

Given that we have counts of vocalizations per sampling 
period yBNij and an estimate of true occurrence zi we can 
generate a prior for the probability that a given BirdNET 
detection belongs to the true positive group g = 1 such that:

Pr (gik = 1) =
λi × zi

λi × zi + ω

and, because the false-positive group makes up the re-
mainder of detections, the probability is simply:

Pr (gik = 2) = (Pr (gik = 1)− 1)

An estimate of the true category (true positive or false 
positive) of a given observation gk is then made using these 
prior probabilities and can also be informed by a small val-
idation set where a human has confirmed the presence or 
absence of a given species on a single recording segment 
(in this case 3-s). For those observations without valid-
ations, gk are modeled such that:

gk ∼ Categorical(Pr (g1k) , Pr (g2k))

Detection probability for all three BN models was of 
the form:

logit
(
p11ij

)
= α0 + α1 × hij−1

pij = zi · p11ij + (1− zi)× p10

where overall detection probability pij  was comprised of 
probability that a detection at site i during period j, p11ij
, was a true positive, and the probability that a detection 
was a false positive, p10 . The p10  component’s prior was 
drawn from a uniform distribution that ranged from 0 to 
1. To keep the model relatively simple we only modeled the 
effect of naïve detections hij−1 (0 for absence, 1 for pres-
ence) from BirdNET data at site i in the previous sampling 
period j − 1, similar to the human-only model.

Modeling habitat associations. We combined vege-
tation covariates with the detection probabilities for 
manually and BirdNET-annotated data to estimate oc-
cupancy while accounting for habitat associations. 
We included a cover of three vegetation types within 
a 100-m radius of each sampling site as a covariate on 
occupancy probability: sage scrub cover type, grassland 
cover type, and oak woodland cover type, because these 
were the predominant vegetation types at the sampling 
sites. Vegetation data were derived from a park-wide 
habitat map (AECOM 2012). Both the occupancy model 
using manually annotated data and the BirdNET data 
had vegetation cover linked to occupancy probability, ψi
, such that:

logit (ψi) = β0 + β1 × sagei + β2 × grassi + β3 × oaki

Where sagei, grassi, and oaki, each respectively repre-
sent percent cover of sage scrub, annual grassland, and 
oak woodland within a 100-m radius of the sampling lo-
cation. Cover was log-transformed to reduce skewness. 
Three sampling sites were missing vegetation data so we 
set these values to the mean of each observed habitat cover 
value. We retained these sites because our sample size was 
limited. All covariates were standardized to have a mean 
of zero and a standard deviation of 1, to maximize con-
vergence and enable a more straightforward comparison 
between model coefficients.

The “true” occupancy state of a site, zi , for each of the 
models (human and BirdNET annotation data) was mod-
eled as a Bernoulli distribution such that:

zi ∼ Bernoulli(ψi)

We used uninformative priors for all parameters except as 
detailed in the preceding sections. We assumed model con-
vergence when monitored parameters had Gelman-Rubin 
statistics <1.1 (Gelman et  al. 2004). Each model was run 
with 3 MCMC chains, had a burn-in of 5,000 iterations, 
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and a posterior draw of 100,000 iterations thinned to every 
fourth sample.

Comparing Model Posterior Distributions
We used the “overlap” function from the “overlapping” 
package in R (Pastore 2018) to determine the propor-
tion that the human model posterior distribution for a 
subset of coefficient estimates (β 0, β 1, β 2, β 3) overlapped 
with the posteriors for each BirdNET model (BN Short, 
BN Long, BN Long Filtered). The output of the “overlap” 
function returns a value that indicates the amount of 
overlap of the two distributions and ranges from 0 which 
indicates no overlap to 1 which is complete overlap. We 
tested if the collection of overlap values across all 13 
focal species was significantly different for a given coef-
ficient (e.g., β 0) between models using a Kruskal–Wallis 
test. We followed a significant Kruskal–Wallis test re-
sult with a pairwise Wilcoxon rank-sum test to deter-
mine which if any models were significantly different 
from one another.

RESULTS

We detected 49 bird species during manual annotation 
of recordings collected during 9-min sampling periods at 
each of 34 sampling sites (Supplementary Material Table 
2). BirdNET detected 104 and 39 bird species when we 
retained only species classifications that had the highest 
confidence score on an individual 3-s segment and filtered 
respectively at a low confidence threshold (confidence 
score > 0.1) and a high confidence threshold (confidence 
score > 0.9) during the same period. A  total of 44 (90%) 
and 32 (65%) of species detected by BirdNET matched the 
manually annotated species list when BirdNET data were 
filtered at a low and high confidence threshold, respect-
ively (Supplementary Material Table 2). One-hundred spe-
cies that are known to occur within the general area (per 
eBird checklists) were not detected by any method (i.e. 
manual or BirdNET).

The species detected at the greatest percentage of sites 
during manual annotation were California Scrub-Jay 
(88.2%), California Quail (82.4%), Bewick’s Wren (73.5%), 
and Ash-throated Flycatcher (64.7%). The species detected 
by BirdNET at the greatest percentage of sites when fil-
tered at a high threshold, during the same 9-min periods 
as manual annotation, were California Quail (47.1%), 
Bewick’s Wren (26.5%), Oak Titmouse (20.6%), and Ash-
throated Flycatcher, California Scrub-Jay, and Wrentit 
(each of these species were detected at 17.6% of sites). The 
percentage of sites with manual and BirdNET species-
level detections was more strongly correlated when fil-
tered at a high confidence threshold (Pearson’s r  =  0.78) 
versus a low confidence threshold (Pearson’s r = 0.66). No 
Bell’s Sparrows were detected during manual annotation 

of the recording data. Upon further inspection we found 
BirdNET often misclassified loud cricket stridulations on 
recordings as Bell’s Sparrow, leading to the high number of 
false detections.

Performance Metrics of BirdNET When Identifying 
Focal Species
We calculated precision and maximum confidence score 
among false positive BirdNET detections for 13 bird spe-
cies detected most frequently during manual annotation 
(Table 1). Precision was >0.70 for 9 of 13 focal species, had 
a mean of 0.81 (SD = 0.20), and ranged from a low of 0.29 
for Common Raven to a high of 0.99 for California Scrub-
Jay. Maximum confidence scores for false-positive detec-
tions had a mean of 0.49 (SD = 0.49), and ranged from a low 
of 0.08 for California Quail and a high of 0.98 for White-
breasted Nuthatch. We also calculated recall for each spe-
cies, using a much longer 9-min period (see Methods) and 
9 of 13 species had recall values <0.5, meaning that these 
species were missed at greater than half of all sites with 
manual detections. Recall values ranged from a low of 0.09 
for Mourning Dove to a high of 0.68 for California Quail.

Reducing False Negatives with Increased Sampling 
Duration
BirdNET correctly identified the presence of each focal 
species at a mean proportion of 0.8 (SD = 0.1) of sites with 
manual detections of a species when a mean 246.1  min 
(SD = 37.5) of recordings were processed (Figure 1). When 
only a single 10-min period was processed by BirdNET, the 
13 focal species were detected at a mean proportion of 0.27 
(SD  =  0.13) of sites. The proportion of sites with manu-
ally annotated detections of a species at which BirdNET 
correctly classified a species as present, when 250 min of 
recording were processed, ranged from a low of 0.55 for 
Mourning Dove to a high of 0.92 for Bewick’s Wren, and 
no species had BirdNET detections at all sites with manual 
detections. The species for which BirdNET required the 
least time to reach its peak proportion of correct positive 
identifications was California Towhee, at 130 min. Across 
all focal species and 250 min of recording, a mean of 16.4% 
(SD = 0.09) of sites with BirdNET detections did not have 
manual detections at the same sites (i.e., BirdNET found 
a site to be occupied but there were no detections from 
manual annotation). However, when manual validations 
of BirdNET detections (also across 250  min) were con-
sidered, a mean of 91.2% (SD = 0.1) of sites with BirdNET 
detections was verified as occupied (Table 3).

Comparison of Occupancy Model Performance Across 
Sampling Methods
We compared the parameter estimates of a traditional oc-
cupancy model using manual annotation data and another 
more complex occupancy model that used three subsets 

D
ow

nloaded from
 https://academ

ic.oup.com
/condor/advance-article/doi/10.1093/ornithapp/duac003/6572065 by KIM

 H
ohenheim

 user on 21 April 2022

http://academic.oup.com/condor/article-lookup/doi/10.1093/ornithapp/duac003#supplementary-data
http://academic.oup.com/condor/article-lookup/doi/10.1093/ornithapp/duac003#supplementary-data
http://academic.oup.com/condor/article-lookup/doi/10.1093/ornithapp/duac003#supplementary-data


J.S. Cole et al. � Occupancy modeling with a multispecies bird sound classifier  9

Ornithological Applications  124:1–15 © 2022 American Ornithological Society

of BirdNET-derived annotation data, as well as manual 
validation data, to estimate true and false-positive rates. 
The occupancy model parameter estimates of the three 
models using BirdNET-derived data largely mirrored those 
of the manually derived data (Figure 2). Mean parameter 
estimates, with the exception of the occupancy intercept 
(Figure 2), usually had the same sign (positive or nega-
tive). The parameter estimates from all models were stat-
istically indistinguishable (Figure 3), with the exception of 
the BN Long model intercept which had a median overlap 
with the manually annotated data of 0.43 compared to me-
dians of 0.01 and 0.02 for BN Long Filtered and BN Short. 
The model using manually-annotated data had the largest 
intercept across the majority of species, followed by BN 
Long BirdNET annotation data (i.e., occupancy probability 
was greatest for these models). All models, with the excep-
tion of BN Long, had a smaller estimated proportion of 
occupied sites than was detected by the human annotator 
(Figure 4).

DISCUSSION

The use of an effective bird sound classification system to 
rapidly process ARU recordings could dramatically reduce 
the cost and time needed to conduct bird surveys, which 
could in turn facilitate spatial and temporal expansion of 
survey efforts. For instance, when searching recordings 
for a rare species, BirdNET can quickly annotate a large 
number of recording hours compared to a human observer. 
However, automated classifiers may also have drawbacks, 
such as misclassification of species, or missing species 
that vocalize infrequently and are often detected visually 
during surveys (e.g., raptors). We found that these two 
issues can largely be mitigated for occupancy modeling, 
at least for our focal species, by using optimal confidence 
thresholds for the specific application, collecting longer 
sampling durations, validating a portion of detections, and 
modeling false-positive rates in the data. Our results dem-
onstrate that the BirdNET annotation output can produce 

FIGURE 1.  Effect of duration of sampling period on the proportion of sites BirdNET was able to correctly identify as occupied by each 
of 13 focal species. We set each species’ threshold for filtering BirdNET data based on the maximum confidence score for false positives 
in that species (see Table 1). Each blue line represents an individual accumulation curve for a randomly shuffled collection of detec-
tions from 26 10-min recording periods (there were 100 randomizations). The thick black line represents the mean proportion across 
all randomization results.
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occupancy model results comparable to those generated 
using manual annotation of recordings of 13 relatively 
common North American bird species.

One drawback of coupling ARUs with an automated clas-
sifier is that the estimation of occupancy probability falls far 
below that of a manual annotation in instances where sam-
pling duration is relatively limited (i.e. BN Short). Whether 
this lower occupancy estimate is a problem for inference de-
pends on the research question to be answered. If the primary 
goal is to understand a species’ relationship to covariates such 
as habitat types, then as long as coefficient estimates of those 
covariates are accurate and precise – and not influenced by 
habitat structure (e.g., lower detectability within densely vege-
tated habitats) – the underlying occupancy probability (occu-
pancy model intercept) can be lower than that from a model 
based on manual annotation with the consequence of impre-
cise model estimates. Missing the presence of a bird, rather 
than falsely identifying its presence, might have only limited 
implications for coefficient estimates if enough points have 
detections. However, as more true detections are generated 
by a classifier, coefficient estimates become more accurate 

TABLE 3.  Proportion of all sites with BirdNET detections where 
a species was detected by BirdNET only (i.e., no manual detec-
tions at a site during a 9-min period) after analyzing a 260-min 
recording (Proportion BirdNET only), and the proportion of 
sites with a BirdNET detection that were verified as occupied 
(Proportion verified occupied) via validation of 100 randomly 
selected BirdNET detections.

Common Name 
Proportion 

BirdNET only 

Proportion 
verified 

occupied 

Acorn Woodpecker 0.35 0.96
Ash-throated Flycatcher 0.32 1.00
Bewick’s Wren 0.08 1.00
California Quail 0.07 0.90
California Scrub-Jay 0.15 1.00
California Towhee 0.60 1.00
Common Raven 0.53 1.00
Mourning Dove 0.50 0.94
Nuttall’s Woodpecker 0.79 0.84
Oak Titmouse 0.33 0.95
Spotted Towhee 0.58 0.95
White-breasted Nuthatch 0.11 1.00
Wrentit 0.15 0.93

FIGURE 2.  Occupancy parameter estimates for habitat associations in occupancy models of 13 focal species using: manual detections 
from 3 3-min periods (dark gray vertical bar for mean and light gray rectangle for bounds of 95% Bayesian credible intervals) at each 
site, BirdNET detections from 3 3-min periods (BN Short), BirdNET detections from 29 3-min periods (BN Long), and BirdNET detections 
filtered to confidence scores greater than a specified threshold from twenty-nine 3-min periods (BN Long Filtered). Mean of parameter 
estimates are denoted by a point and 95% Bayesian credible intervals by whiskers. Habitat types are listed at the top of each panel. 
Species codes on the y-axis are defined in Table 1. Models that did not converge (NUWO, WBNU, WREN for BN Short) are not presented.
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and precise. Another potential pitfall is placing ARUs close 
enough together to detect the same bird simultaneously at 
two points, which may inflate estimates of habitat use. If the 
study objective is to identify all points with a given species 
with relative certainty, then much longer duration recordings 
may be required. Ultimately, simulation is perhaps the best 
method for determining the minimum sampling required to 
meet a given objective (see Wood et al. 2021).

BirdNET Classifier Performance
BirdNET performed relatively well at identifying 9 of 13 
focal species and had relatively high precision (i.e. preci-
sion > 0.7). BirdNET was worst at identifying Ash-throated 
Flycatcher (Myiarchus cinerascens), Common Raven 
(Corvus corax), Mourning Dove (Zenaida macroura), 
and White-breasted Nuthatch (Sitta carolinensis), with 
precisions of 0.63, 0.29, 0.67, and 0.69 respectively. Indeed, 
precision values were generally high relative to values pre-
viously reported (Kahl 2019; Supplementary Material Table 
3). For example, Nuttall’s Woodpecker (Picoides nuttallii) 
had a high precision value of 0.95 compared with 0.36 re-
ported by Kahl. A notable exception was Common Raven, 
with a precision value of 0.29 compared with 0.66 reported 

by Kahl. The majority of Common Raven false positives 
were misidentifications of heavy traffic noise from a nearby 
paved road. In the case of Nuttall’s Woodpecker, habitat 
in our study area habitat was more suitable for this spe-
cies than most other woodpeckers, so even low confi-
dence detections labeled as Nuttall’s Woodpecker (such as 
drumming) were likely to be correct. We caution against 
generalizing our results to other study areas because of po-
tential regional differences in vocalizations and recording 
environment. Some characteristics that may lead to high 
precision values among particular species may be frequent 
and/or loud vocalizations, occurrence at high densities, 
or frequent movement within home ranges such that an 
ARU has a higher likelihood of obtaining a high-quality 
recording at least once during a long-duration recording. 
Our metric of precision was similar to those used in other 
classifier studies which defined true positives as classifier 
detections that are temporally very near (i.e., within 1  s) 
manual annotations (Katz et al. 2016b) or were recording 
clips of vocalizations detected by a classifier and verified 
as correct by a human (Sebastián-González et  al. 2018). 
While our metric of precision does not ensure instant-
aneous alignment of manual and classifier annotations, it 
should be fine-scaled enough to accurately measure the 
false-positive rate of the classifier.

We hypothesize that the relatively long duration re-
quired to detect focal species was driven by birds vocal-
izing too far from the ARU and a low signal-to-noise ratio, 
resulting in low BirdNET confidence scores. A  human’s 

FIGURE 4.  Model estimates of the proportion of sites occupied 
across the study area from occupancy model output using three 
sets of BirdNET annotation data (colors indicated in legend). Black 
error bars represent 95% Bayesian credible intervals (BCIs). BCIs 
are very small for some models (i.e. BN Long Filtered) and may not 
be apparent on plots. Horizontal dotted line indicates the propor-
tion of sites where each species was manually detected during a 
9-min period. Bird species codes that label each panel are listed in 
Table 1. Models that did not converge (NUWO, WBNU, WREN for 
BN Short) are not presented.

FIGURE 3.  Overlap of occupancy parameter estimates for 13 
focal species between a model using manually annotated data 
and 3 models using: BirdNET detections from 3 3-min periods 
(BN Short), BirdNET detections from 29 3-min periods (BN Long), 
and BirdNET detections filtered to confidence scores greater than 
a specified threshold from twenty-nine 3-min periods (BN Long 
Filtered). Upper and lower bounds of boxplots represent the 1st 
and 3rd quartiles of overlap estimates and horizontal line in the 
center of the box represent the median. Dots above and below 
boxes are considered outliers. Groups with significant differences 
are denoted with an asterisk.
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ability to discern recorded bird vocalizations is well 
known to decline with the distance between the bird and 
recording device (Yip et al. 2017b) and a similar relation-
ship appears to hold true for automated classifiers (Knight 
and Bayne 2019). In our study, the ability of BirdNET to 
identify a species presumably declines faster with distance 
than a human’s identification ability. Time to detection 
would have likely been even greater if we analyzed record-
ings with strong wind noise, given that wind noise can ad-
versely affect recall by obscuring the audio signal of bird 
vocalizations (Stowell et al. 2019). If multiple bird species 
are vocalizing during a single 3-s period then the loudest 
species will likely be given the highest confidence score, 
and be ranked 1, with softer calling or more distant spe-
cies ranked >1. If a louder and more vocal species consist-
ently vocalize and obscure another softer calling species, 
the likelihood of detection for the latter will be lower, but 
the species may eventually be detected with sufficiently 
extended sampling duration. For situations where manu-
ally filtering recordings to only those with low to moderate 
wind noise is not feasible, evaluation of the performance of 
BirdNET after the application of denoising techniques (i.e., 
methods which remove background noise to allow better 
identification of the bird audio signal), such as wavelet 
decomposition (Priyadarshani et al. 2016) could be bene-
ficial. Alternatively, an estimate of anthropogenic noise – 
one component of the Normalized Difference Soundscape 
Index defined by Kasten et al. (2012) – could be generated 
by the “ndsi” function in the R package “soundecology” 
(Villanueva-Rivera and Pijanowski 2018). This index could 
be used to exclude recordings above a certain anthropo-
genic noise threshold, or the noise estimate could be 
used as a covariate on false and true positive rate, or as a 
covariate on detection probability (Knight et al. 2021).

Because we were able to model true and false-positive 
rates, we did not need to filter our data at a confidence 
threshold, which would likely have delayed the average 
time to the first detection. When true and false positive 
rates are modeled, all detections can be included in the 
model and the model estimates which detections are true 
positives, rather than removing detections falling below 
a certain confidence score and then modeling these fil-
tered data. The drawback of modeling all BirdNET detec-
tions, versus filtering and then modeling, is that models 
require much more processing time because of the large 
number of detections that must be estimated as a true 
or false positive. Also, although BirdNET validations are 
not required for occupancy modeling, they do help the 
model determine the false positive rate with greater pre-
cision. In our analysis, using a confidence threshold to 
exclude likely false positives yielded substantially lower 
estimates of occupied sites than manual annotation, 
but the occupancy model ran much more quickly. Barre 
et  al. (2019) proposed filtering data using at least two 

significantly different thresholds, then running models 
using those data, and looking for consistency (or lack 
thereof ) in model results – rather than searching for an 
optimal threshold. Occupancy models that account for 
false-positive detections may provide accurate results 
with as little as 1% of detections verified by a human ob-
server (Chambert et al. 2018). In instances where there 
are very few detections, 50 validated detections for a 
given species are required for accurate estimation of the 
false-positive rate (Chambert et al. 2018). In our study, 
we chose to be conservative and validate 100 detections.

The validation process might become relatively time-
consuming when BirdNET is used in species-rich study 
areas. In our study, approximately 30 min per species was 
required to validate 100 detections; validating all 104 spe-
cies detected by BirdNET would thus have taken about 
52 person-hours. Rare species (i.e., fewer than 100 detec-
tions) for which all BirdNET detections are validated, can 
be modeled using a more typical occupancy model that ex-
cludes estimation of true and false positive rates because 
all true positive detections are verified. Overall, when 
using the eBird species filtering process we implemented, 
or if supplying BirdNET with a list of species known to 
occur in a region, the required validation should be rela-
tively tractable. The limited effort invested in the validation 
allows effective modeling of false-positive error, without 
the extensive effort required to validate days or months of 
recordings.

Our occupancy model comparisons suggest that ana-
lyzing BirdNET data using occupancy models that account 
for false positives can produce results that are similar to 
those produced by manual annotation. The occupancy 
model that generated results most similar to the manual 
annotation was based on long-duration BirdNET data in 
which the occupancy intercept was closest to the human 
model output, meaning sites occupied by a species were 
correctly identified and habitat characteristics of those 
sites influenced the model output. Nevertheless, any of 
the BN models might be improved further by adding 
covariates on the true- and false-positive rates. For ex-
ample, external factors (e.g., wind, habitat type, tempera-
ture, time of day, diversity of vocalizations) likely influence 
the ability of BirdNET to correctly identify a species. Wind 
noise could be evaluated for a given duration of recording 
by another prebuilt classifier, and a metric of vocal diver-
sity such as the Acoustic Complexity Index (Pieretti et al. 
2011) could be tested for its relationship to false-positive 
rate. Presumably, more acoustically complex communi-
ties present more opportunities for BirdNET to incorrectly 
identify a vocalization.

Another issue related to the analysis of BirdNET data is 
how to deal with species missed due to distance from the 
microphone. Researchers interested in understanding the 
effective sampling area of an ARU for a given bird species 
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(Turgeon et al. 2017, Yip et al. 2017a) could investigate the 
relationship between distance to ARU and BirdNET con-
fidence score, ARU model, and habitat type, as well as the 
frequency and volume of the vocalization. Determining 
the effective sampling area of an ARU may be particularly 
useful in deciding the radius within which vegetation char-
acteristics may be relevant, or restricting counts of birds 
to a given habitat type using the loudness of vocalizations 
(Hedley et al. 2021). Estimating an effective sampling area 
can be accomplished with playback experiments to at-
tract birds to an ARU array (Knight and Bayne 2019), or by 
playing recorded vocalizations at a series of distances from 
ARUs (Yip et al. 2017a) and modeling the relationship be-
tween classifier confidence score and distance. Others have 
successfully generated estimates of abundance (though not 
density) by coupling human surveys with ARU annotations 
through a form of N-mixture model (Doser et al. 2021) and 
via a statistical offset (Van Wilgenburg et  al. 2017). The 
latter method could also be applied to BirdNET data if de-
tections were partially validated or the data stringently fil-
tered. Density has successfully been estimated with ARUs 
when the cue rate of a species is known, weather condi-
tions are good, and extensive data on the relationship 
between distance and power of vocalization has been mod-
eled (Sebastián-González et al. 2018). Though promising, 
this method may be quite time-consuming for a full bird 
community.

Conclusion
Our results demonstrate that in a study area with an esti-
mated bird richness of 49 species (based on manual annota-
tion), BirdNET output data for the top 25% most abundant 
species can produce occupancy modeling results similar to 
the manual annotation of bird recordings, provided that a 
sample of observations are validated by a human and sam-
pling duration is substantially increased relative to conven-
tional point counts using human observers. We provide 
a demonstration of the process required to use BirdNET 
– from analyzing raw recordings to generating occupancy 
model output. Other methods of automated annotation 
such as single species classifiers (whether using a convo-
lutional neural network or not) are compatible with the 
BN Long model so long as an estimate of classifier confi-
dence (e.g., correlation coefficient for template matching) 
is generated by the method. We encourage the continued 
evaluation of the BirdNET classifier in other geographic 
regions, with a variety of ARU models, habitat types, and 
bird communities. We are optimistic about the capacity of 
BirdNET to annotate bird acoustic recordings in diverse 
contexts, including poorly surveyed regions (e.g., Van 
Wilgenburg et al. 2020) and provide valuable standardiza-
tion across studies. The dual developments of affordable 
ARUs and automated classifiers such as BirdNET provide 

the opportunity to greatly expand bird research and moni-
toring efforts and increase the accuracy and precision of 
occupancy, abundance, and population trend estimates, 
improving our understanding of population status and dy-
namics, and our ability to conserve vulnerable species.

SUPPLEMENTARY MATERIAL

Supplementary material is available on Ornithological 
Applications online.
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